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Abstract—3D facial avatar reconstruction, a crucial topic in computer graphics and computer vision, has achieved significant advance-
ments due to the development of neural radiance fields (NeRFs). However, most NeRF-based 3D facial avatars primarily focus on
subject-specific reconstruction, necessitating numerous multi-view training images with various expressions, and the learned model
cannot generalize to new subjects, limiting their wider applicability. To address these challenges, we propose a generalizable one-shot 3D
facial avatar reconstruction framework capable of reconstructing high-fidelity 3D facial avatar from a single source image. To overcome
the challenges in obtaining generalization ability and lacking multi-view supervision, we employ the generative prior of pretrained 3D
GAN and develop an efficient encoder-generator pipeline to reconstruct the canonical neural volume of the source image, then further
leverage a coarse-to-fine generation strategy to synthesize canonical volume with image-specific details, enabling reconstructing high-
fidelity facial avatars without the need for test-time finetuning. To facilitate fine-grained control over facial dynamics, we incorporate a
deformation field to warp the canonical volume into target expressions, enabling accurate motion modeling that can be controlled by
both video and audio signals. Through comprehensive experiments, we demonstrate that our method achieves superior reconstruction
and reenactment results compared to state-of-the-art methods. Please watch our Demo video for a more comprehensive experience.

Index Terms—3D facial avatar reconstruction, 3D morphable models, Neural radiance field, 3D-aware GAN.
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1 INTRODUCTION

FACIAL avatar reconstruction holds a pivotal position in
the realms of computer graphics and computer vision,

given its exceptional applications in virtual reality (VR),
augmented reality (AR), the film industry, and teleconfer-
encing. The ability to produce high-fidelity face reconstruc-
tions and achieve fine-grained face reenactment is crucial in
unlocking the vast potential of these innovative domains.

To reconstruct facial avatars, several 2D-based meth-
ods [1], [2], [3], [4], [5], [6], [7] have been proposed. These
methods utilize flow-based warping in image or feature
spaces for motion transfer, along with encoder-decoder
networks for synthesizing appearance. Through training on
large-scale face video datasets [3], [8], [9] containing a large
number of identities, these methods can generalize to new
identities and produce vivid reenactment results even pro-
vided with just a single source image. However, 2D-based
methods lack constraints on 3D facial geometry and struggle
to generate multi-view consistent images, making them
prone to artifacts when handling large driving poses or
expressions. Conventional parametric face model [10], [11] -
based methods [12], [13], [14], [15], [16], [17] model 3D faces
with template mesh and 3DMM parameters [10]. While they
support flexible control over poses and expressions, these
mesh-based methods suffer from inferior texture quality,
memory inefficiency, and are less effective in modeling non-
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face regions, such as teeth, hair, and accessories. Recently,
the photo-realistic and multi-view consistent rendering abil-
ity of Neural Radiance Fields (NeRFs) [18] have led to
the development of NeRF-based facial avatar reconstruc-
tion [19], [20], [21]. These works achieve facial reenactment
by learning deformation fields or rendering functions con-
ditioned on control signals, with the pose and expression
parameters of 3DMMs [10] being the most commonly used
conditions. Although achieves outstanding visual quality
and view consistency, NeRF-based methods suffer from two
limitations: First, they necessitate a substantial number of
images featuring various poses and expressions of the target
face for training, which may not always be accessible in real-
world scenarios; Second, they are subject-dependent and
can only be used to generate images of the training identity,
i.e., they are not generalizable to new identities. The lack of
generalization ability and the demand for extensive multi-
view training data limit their wider applicability.

In this work, our objective is to develop a NeRF-based,
generalizable, one-shot facial avatar reconstruction method
that requires only a single source image and can seamlessly
adapt to new identities without test-time finetuning. This
goal presents several formidable challenges: 1) Accurately
reconstructing a 3D face from a single source image is dif-
ficult due to the inherent complexity of facial distributions
and the absence of multi-view information; 2) Endowing a
personalized NeRF with the ability to generalize to different
identities is a demanding task; 3) Precise control over facial
motion in NeRF remains elusive, particularly in one-shot
scenarios.

To overcome the aforementioned challenges, we devised
several innovative solutions. First, we capitalize on the
generative prior of a NeRF-based 3D GAN [22] to facilitate

https://www.youtube.com/watch?v=a4ZztVENupw
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Fig. 1. We propose a NeRF-based, generalizable one-shot facial avatar
reconstruction method, which enables high-fidelity facial avatar recon-
struction and reenactment given a single source image, and supports
both video and audio as control signals.

3D reconstruction from a single image. The 3D GAN’s
latent space encodes a robust 3D-consistent generative prior,
significantly contributing to the synthesis of diverse neural
volumes for human faces. To align this latent space with
real images, we develop an efficient vision transformer [23]-
based image encoder that takes real images as input and
produces a set of latent codes, which are then fed into the 3D
GAN’s generator for neural volume synthesis. This encoder-
generator pipeline empowers our method to achieve 3D
reconstruction from just a single source image. Nevertheless,
due to the compression loss caused by the image encoder,
the reconstructed volume exhibits poor identity preserva-
tion and low texture quality. To supplement the loss of
detailed information, we further leverage a coarse-to-fine
generation strategy and learns a detail network. This detail
network processes the residual between the source image
and its coarse reconstruction, generating a residual feature
rich in intricate information, which is then fused with the
coarse feature of the 3D GAN generator, steering a refined
neural volume generation process. Second, in pursuit of
accurate motion modeling, unlike conventional GAN inver-
sion methods [24], [25], [26], [27] that faithfully reconstruct
the source image, we project the input image, encompassing
any potential expressions, into a shared canonical space
featuring an aligned expression. Following this, we learn
a deformation field to model facial dynamics, which estab-
lishes a conditional mapping that transforms each sampled
point in the target expression space into the canonical
space based on 3DMM [10] driving signals. Distinct from
personalized NeRF avatars [19], [21], [28], [29], we endow
our deformation field with generalization ability by con-
ditioning it on both identity and expression parameters of
3DMMs, and train it in conjunction with the canonical space
on a large-scale video dataset [9]. Consequently, our method
can effectively adapt to any input identity and accurately
model their facial motions. In addition to addressing the
aforementioned challenges, we also venture into various
applications of our method. To enhance multi-modal facial
motion control, we finetune the deformation field using

video-audio data pairs [30], which allows our method to
extend to audio-driven avatar synthesis, creating a more
immersive experience. Furthermore, beyond modeling real-
world faces, we explore the potential of our method in syn-
thesizing virtual avatars, thereby broadening its synthesis
capabilities.

In conclusion, our work makes the following contribu-
tions: 1) We present a NeRF-based, generalizable one-shot
facial avatar reconstruction method capable of synthesizing
high-fidelity 3D facial avatars from a single source image.
Our method, once trained, effectively adapts to unseen
test images without test-time finetuning, offering greater
efficiency and practicality compared to personalized ap-
proaches. 2) Our method supports real-world and virtual
avatar creation, and facilitates multi-modal facial motion
control, enabling both video-driven and audio-driven 3D
facial avatar synthesis. 3) We conducted comprehensive
experiments, comparing our method with both 2D and 3D
facial avatar synthesis methods and demonstrate its supe-
rior performance in reconstruction and reenactment tasks.

This work extends NOFA [31], which was previously
presented in a conference. We have addressed several key
limitations of NOFA, and implemented novel applications
as well as conducted comprehensive experiments to vali-
date this improved method. First, we significantly improve
NOFA’s efficiency by employing a vision transformer-based
image encoder, a residual-based coarse-to-fine generation
strategy, and a synthetic data-assisted progressive training
strategy, enabling high-fidelity 3D avatar synthesis with-
out laborious test-time finetuning. Unlike NOFA, which
requires time-consuming and GPU-intensive test-time fine-
tuning (approximately 20 minutes on a 24G GPU) for accu-
rate reconstruction, our improved method achieves similar
reconstruction quality, and even better performance in large
face poses, in a tuning-free manner. This substantial im-
provement paves the way for real-time applications. Second,
NOFA only supports video-driven avatar synthesis. In this
improved method, we further endow it with the capability
of audio-driven facial avatar synthesis, enabling vivid facial
motion generation from audio input. Third, beyond syn-
thesizing real-world facial avatars, we explore application
on virtual avatar synthesis through latent space sampling,
which can not be achieved by NOFA. Lastly, we carry out
extensive experiments to validate our improved method,
incorporating additional comparisons with the latest state-
of-the-art approaches and more detailed ablation studies.

2 RELATED WORK

2.1 Neural scene representation
Neural radiance fields (NeRF) [18] represents 3D scenes
using MLP-based implicit function and achieve compelling
rendering quality in 3D reconstruction tasks. Leveraging its
inherently differentiable rendering process, NeRF can be
trained simply using multi-view images and their corre-
sponding camera labels and has been widely used in the
field of 3D modeling and novel view synthesis. However,
conventional NeRF cannot handle dynamic subjects. Sev-
eral approaches have been devoted to work around this
limitation [19], [20], [21], [32], [33], [34], [35], [36], [37], [38].
The solutions can be roughly categorized into two groups: a
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train of thought is to condition the radiance field on control
signals, which will change the density and color of the
observed points. Another train of thought is to additionally
learn a deformation field that accepts control signals and
coordinates as input and predicts coordinate offsets from
the deformed space into canonical space. For NeRF-based
facial avatar synthesis [19], [20], [21], [28], [29], [32], [39],
[40], the pose and expression coefficients of 3D Morphable
Face Models (3DMMs) [10] are mostly employed as control
signals to model facial deformations. These studies focus on
subject-dependent reconstruction and are not generalizable
to different identities. Additionally, a large set of facial
images of a specific identity is required for training. In
contrast to above works, we investigate the subject-agnostic
problem, where only a single portrait image is available for
reconstruction, and propose a generalizable model capable
of handling various testing faces.

2.2 3D-aware Generative Networks
Inspired by the breakthroughs achieved by 2D Genera-
tive Adversarial Networks (GANs) [41], [42], [43], recent
researches [22], [44], [45], [46] have extended 2D image
generation into 3D settings by combining GANs with Im-
plicit Neural Representations (INRs). These unconditional
3D GANs can generate photorealistic renderings and en-
able control over views. However, they do not support
fine-grained and explicit expression controls. Recently, [47]
proposed a generative NeRF that overfits multiple identi-
ties at the same time, by learning subject-specific identity
codes as the condition of NeRF MLPs. This method can be
used for one-shot head avatar synthesis by finetuning the
latent code and MLP parameters on a single source image.
However, its training data are captured in studio conditions,
and the one-shot synthesis results are of low quality due
to its sparse latent space (only 15 identities are encoded).
Several concurrent works [48], [49], [50], [51] leverage the
parameters of 3D Morphable Face Models (3DMMs) to
explicitly control the expression of rendered faces. However,
these models are specifically designed for unconditionally
generating virtual avatars and cannot be readily applied in
real-world applications. In contrast to these methods, we
utilize the prior of 3D GAN and jointly train an encoder-
decoder network on large-scale video datasets, achieving
real image 3D reconstruction and vivid motion reenactment.

2.3 GAN Inversion
GAN inversion techniques serve as a bridge to bring GANs
into real-world applications, such as image editing and
reenactment. Existing GAN inversion approaches can be
roughly divided into three categories: The optimization-
based methods [52], [53] which optimize the latent codes by
minimizing the distance between the ground truth image
and the generated one, achieving promising reconstruction
results yet limited by its low efficiency. The learning-based
methods utilize an encoder network to directly encode
the input images into latent codes [24] [25], equipping
with high efficiency and generalization ability while the
reconstruction results often lacks fine details due to the
information loss in the encoding process. The hybrid GAN

inversion approaches utilize a learned encoder to predict an
initial latent code and further refine it in the optimization
process [54], the generator parameters are also optimized
in [26] to achieve better results. Additionally, [27] proposes
a residual-based compensation network to assist the GAN
inversion process, achieving expressive reconstruction and
editing results. Meanwhile, the combination of GAN inver-
sion techniques and 3D GANs has also brought hope for
single-image to 3D reconstruction. Several works explored
optimization-based inversion with view regularization for
3D reconstruction [55]. There have also emerged learning-
based methods [31], [56], [57], [58] that achieve 3D face
reconstruction using a learned encoder.

2.4 One-shot Talking Head Synthesis
One-shot talking head synthesis aims to generate talking
face videos from a source image and driving signals (typi-
cally video or audio signals). The generated videos should
maintain the facial characteristics of the source image and
exhibit reasonable facial motion in response to the driving
signal. A large amount of works study these in the 2D image
or feature space, where the key idea is to learn two separated
networks to control motion and model appearance. For
example, the works of [2], [5] predict warping flow from
key-points to warp features of source images into target
motion. The work of [59] uses 3DMM parameters to mod-
ulate flow generator and a refine network to supplement
fine details. [1] further leverages the prior of StyleGAN [41]
to enhance appearance. These methods are trained on the
large-scale face video datasets [3], [8], [9], [60] containing
rich identities and expressions, thus can be generalized to
unseen motion and identity given just a single input image.
However, they cannot handle large pose changes due to the
artifacts brought by feature warping. Some methods [3], [6]
have devoted to address this problem by introducing 3D
CNNs to produce 3D feature representation of the input
image and apply 3D feature warping. Nevertheless, the
learned representation doesn’t model the underlying 3D
facial geometry and the warping process lack explicit 3D
constraints, causing poor multi-view consistency and can
hardly be used in novel view synthesis. There are also
3D-based methods that reconstruct 3D facial avatar from
a single image [61], [62]. These methods are resolution-
limited, prone to generating overly blurry textures, and
cannot model backgrounds.

3 METHOD

We propose NOFA++, a NeRF-based one-shot facial avatar
reconstruction framework, which will be described in de-
tail in this section. First, in Section 3.1, we introduce an
efficient encoder-generator network tailored for coarse 3D
volume synthesis from a single image. Next, we illustrate
a residual-based coarse-to-fine generation strategy in Sec-
tion 3.2, which enables fine volume synthesis with image-
specific details. Subsequently, we introduce the architecture
of the deformation field designed for accurate facial mo-
tion modeling in Section 3.3. In Section 3.4, we present
a synthetic data-assisted progressive training strategy that
utilizes both real and synthetic data for effective model
training.
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Fig. 2. Inference pipeline of NOFA++. We adopt a coarse-to-fine strategy to generate high-fidelity facial avatar. In the coarse stage, given a
source image Is, a transformer encoder E is adopted to encode the image into the latent space of the tri-plane generator G, which will produce
a coarse canonical volume Vc with an aligned expression, while preserve the identity of Is. Then, a coarse image I can be rendered from Vc. In
the refine stage, a detail network is employed to accept the images residual Ires = Is − I as input, and generate a residual Fres to supplement
image-specific details for the coarse tri-plane feature Fc, forming a refined feature Fe for fine volume synthesis. To achieve explicit motion control,
we employ a 3DMM extractor M to extract 3DMM parameters from driving signals and source image Is, then use the combination of source identity
and target expression parameters as control signal of the deformation field, which will deform the reconstructed fine canonical volume Ve into target
expression.

3.1 Learning coarse volume synthesis with generative
prior

To reconstruct high-fidelity facial avatars, the first and most
crucial step is to construct a 3D representation of the given
subject. As shown in Fig. 2, we leverage the generative prior
of a pretrained 3D GAN [22] to synthesize 3D representation
of the input image. It consists of an image SR module,
a volume renderer, and a tri-plane generator G. The tri-
plane generator G employs a StyleGAN2 [42] backbone
to synthesize features of size 96 × 256 × 256, which will
be reshaped into a tri-plane of size 3 × 32 × 256 × 256.
Subsequently, the features at each coordinate in the tri-plane
can be efficiently queried using coordinates and decoded
into neural volumes for volumetric rendering, resulting in
view-consistent images.

The 3D GAN was originally designed to sample latent
codes from its latent space and synthesize virtual faces.
To align the unconditional latent space with real images,
we draw inspirations from GAN inversion approaches [24],
[25], [27] and learn a vision transformer [23]-based encoder
to achieve image-to-volume synthesis. Specifically, given
a source image Is, we train an encoder E to project the
source image into the latent space of the tri-plane generator
G, i.e., encoding Is into a set of latent codes ws that will
modulate the intermediate features of G for volume genera-
tion. Different from NOFA [31] that employed a CNN-based
encoder for image encoding, in this improved method, we
alternate to train a more effective transformer network [23]
to improve the quality of image-to-volume synthesis. The

volume synthesis process is formulated as:

Vc = G(E(Is) + w), (1)

where Vc denotes the coarse neural volume produced by G,
and w is the pre-computed average latent code of G, which
remains fixed during training. It is worth noting that, unlike
conventional GAN inversion approaches that faithfully re-
construct the input image, the coarse volume Vc produced
by our method is defined in the canonical space, i.e., with
an aligned expression instead of preserving the original
expression of Is. In our method, learning a canonical space
is critical for modeling facial dynamics, as it enables the
application of backward deformation for accurate motion
control. The canonical space is naturally learned by jointly
training the entire framework in an end-to-end manner,
without explicit internal supervision. Visualization of the
learned canonical expression is shown in Fig. 8.

3.2 Learning fine volume synthesis with detail network
Although the vision transformer-based encoder facilitates
a more accurate volume synthesis than CNN-based en-
coder adopted in NOFA [31], it still faces challenges in
recovering fine details of the input image, since encoding
the input image into the extremely low-rate latent codes
will inevitably result in information loss [63]. To alleviate
this issue, NOFA [31] adopts a compensation network to
take the intermediate feature of the tri-plane generator G
as input and produce a compensation volume, which is
directly added with the simultaneously generated coarse
volume to supplement detailed information. Nevertheless,
experiments demonstrate that this strategy lacks sufficiency
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Fig. 3. Illustration of the deformation field. The deformation field in
our method models the backward deformation, transforming 3D points
in the deformed space back to the canonical space. It comprises two key
components: a deformation network (D-Net) and a weighting network
(W-Net). The D-Net predicts coordinate offsets between xc and xd, by
taking the concatenation of positional embedded xd and (α, β) as input,
predicts a 3D offset ∆x. Furthermore, we train a W-Net that accepts the
concatenation of positional embedded xd and α as input and predicts
the offset weights to be multiplied with ∆x, enabling more accurate
motion modeling. Finally, xc is derived by adding the weighted ∆x to
xd.

in faithfully supplementing information loss to achieve
high fidelity reconstruction. Thus, NOFA [31] still requires
time-consuming and GPU-intensive test time finetuning to
achieve more accurate reconstruction, which impacted its
broader applications.

Different from NOFA [31], we explore a more effective
coarse-to-fine generation strategy, which enables the gen-
eration of high-fidelity 3D avatars without the need for
laborious test-time finetuning. As shown in Fig. 2, after
generating the coarse volume, we learn a detail network to
take the residual [27] of the source image Is and its coarse
canonical reconstruction I as input and produce a residual
feature that contains intricate details of the source image,
expressed as:

Fres = C(Ires), (2)

where Ires = Is − I denotes the residual image. The output
residual feature Fres is then applied to modulate the coarse
tri-plane feature Fc through a feature fusion network to
supplement the image-specific details, expressed as:

Fe = γ(Fres)⊙ Fc + η(Fres), (3)

where γ and η are two light-weight CNNs, and Fe denotes
the refined tri-plane feature. Through feeding the refined
feature Fe to the generator G and repeating the volume gen-
eration process, the final generated fine canonical volume
Ve will contain more details of the source image, enabling
high-fidelity 3D reconstruction.

3.3 Dynamic modeling with 3DMM guidance
In order to achieve explicit motion control on the recon-
structed neural volume, we exploit a deformation field to
model facial dynamics and utilize the semantic parameters
of a 3DMM face model [11] as control signals. In 3DMM, the
face shape is defined as:

S = S̄+ αBid + βBexp, (4)

where S̄ represents the average face shape, Bid and Bexp

are the identity and expression basis computed by PCA [64].
We adopt the coefficients α and β as control signals, which
are semantically meaningful and enable fine-detailed ex-
pression control.

For video-driven avatar synthesis, let Is represent the
source image, and It represent the target image with desired
expression, we employ an off-the-shelf 3D face reconstruc-
tion model [12] to estimate source identity parameter αs

from Is, and derive target expression parameter βt from It.
We use a concatenation of (αs, βt) as the control signal of
the deformation field, since we found that additionally use
source identity αs as condition helps to preserve the identity
of the deformed volume, which is crucial for endowing the
deformation field with generalization ability.

In particular, the deformation field models the backward
deformation that deforms 3D points in the deformed space
to the canonical space. As shown in Fig. 3, to render facial
image with a specific expression (α, β), we shoot straight
rays in the deformed space and sample points along the
rays. For each sampled point xd in the deformed space,
we use the deformation field to predict its corresponding
canonical coordinate xc and query the tri-plane feature at
xc, which is then used to regress the density and color at
xd for neural rendering. The deformation field consists of
a deformation network (D-Net) and a weighting network
(W-Net). We employ D-Net to predict coordinate offsets
between xc and xd, it takes the concatenation of positional
embedded xd and (α, β) as input and predicts a 3D offset
∆x. Drawing inspiration from the FLAME mesh model [65]
which assigns skinning weights on mesh vertices for smooth
blending, we additionally train a W-Net, which takes the
concatenation of positional embedded xd and α as input
and predicts the offset weights to be multiplied with ∆x,
enabling more accurate motion modeling. Finally, xc is
derived by adding the weighted ∆x to xd.

Following the deformation field, a volume renderer is
utilized to perform volume rendering along the deformed
bent rays, generating an observation in the deformed space.
Subsequently, we use an image SR module inherited from
the 3D GAN [22] to produce the final output Î .

3.4 Synthetic data-assisted progressive training
Reconstruction training with synthetic data. During this
training stage, we first fix the pretrained generator G and
train the transformer-based image encoder E to accomplish
image to coarse volume synthesis. The training is carried
out using synthetic 3D data generated by the adopted 3D
GAN [22]. At each training iteration, we randomly sample a
volume from its latent space, and sample two camera poses
Ps and Pt to render a set of training images with the same
identity, involving high-resolution image pair Is and It, raw
image pair Irs and Irt generated before the SR module, and
pair of rendered depth map Ids , Idt . Subsequently, we use Is
as the input of the image encoder, employing Is, It and Irs ,
Irt as multi-view supervision. We additionally utilize depth
map pair Ids , Idt for geometry regularization.

The loss function for training the image encoder is de-
fined as:

Lenc = λLPIPSLLPIPS + λL2LL2 + λdepthLdepth, (5)

where λLPIPS, λL2 and λdepth are set to 1.0, 1.0 and 2.0 re-
spectively. Here, the perceptual loss [66] LLPIPS is computed
as:

LLPIPS = LPIPS(Is, Is) + LPIPS(It, It)+

LPIPS(Irs , I
r
s) + LPIPS(Irt , I

r
t ),

(6)
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where Is, It, I
r
s and I

r
t are rendered from the reconstructed

coarse volume Vc. The L2 loss LL2 is computed as:

LL2 = ||Is − Is||2 + ||It − It||2 + ||Irs − I
r
s||2 + ||Irt − I

r
t ||2.

(7)
We also apply a depth loss Ldepth on the reconstructed
depth pair I

d
s , I

d
t and ground truth depths to regularize the

reconstructed geometry, expressed as:

Ldepth = ||Ids − I
d
s ||2 + ||Idt − I

d
t ||2. (8)

After training the image encoder E, we fix both it and
the generator G, and proceed to train the detail network
along with the feature fusion network for fine volume
synthesis. The utilized loss functions and hyperparameters
are the same as those used for training the image encoder,
expressed as:

Ldetail = λLPIPSLLPIPS + λL2LL2 + λdepthLdepth, (9)

where we compute the above loss terms on the recon-
structed fine volume Ve, using final upsampled images Îs
and Ît, raw images Îrs and Îrt , as well as the rendered depth
Îds , Îdt .
Deformation training with large-scale video data. In this
training stage, we jointly train the entire model, including
the deformation field, on a large-scale video dataset [9]. At
each iteration, we sample a source image Is and a target
image It from the same video clip, using Is as model input
and It as the supervision. As mentioned before, we use
the 3DMM parameter (αs, βt) estimated from Is and It
as control signal of the deformation field. We use multiple
objectives to ensure accurate motion modeling. Firstly, we
apply a reconstruction loss consisting of perceptual loss [66]
and L2 loss between the synthetic image Î and the target
image It, expressed as:

Lrec = ||It − Î||2 + LPIPS(It, Î). (10)

Additionally, we employ a local reconstruction loss to fur-
ther enhance the critical mouth and eye regions. To accom-
plish this, we estimate facial landmarks using MTCNN [67]
to create bounding boxes and crop the mouth and eye
regions from It and Î . We then apply the reconstruction
loss to the cropped region, formulated as:

Lbbox = ||bbox(It)− bbox(Î)||2 + LPIPS(bbox(It), bbox(Î)).
(11)

For better identity preservation, we also incorporate a face
recognition loss between the synthetic image and the target
image:

Lid = 1−
〈
F (It), F (Î)

〉
, (12)

where F (·) is the pretrained ArcFace [68], ⟨·, ·⟩ denotes
cosine distance.

The total objective of this training stage is defined as:

Ldfm = λrecLrec + λbboxLbbox + λidLid, (13)

where λrec, λbbox, λid are set as 1.0, 1.0 and 0.1 respectively.
Refinement training with hybrid data. Since the video
dataset [69] has relatively lower texture quality compared
to the synthetic 3D data used in the reconstruction training
stage, training on it would lead to a decline in visual

quality. To address this issue, we incorporate an additional
refinement training stage that utilizes both the synthetic 3D
data and video data to enhance visual quality. During this
stage, we alternate between training on the synthetic dataset
and the video dataset. Specifically, we conduct one iteration
on the synthetic dataset after every two iterations on the
video dataset. At the synthetic iteration, we train the entire
model using the same loss functions and hyperparameters
as defined in Eq. 9. At the video iteration, we fix other mod-
ules and only train the deformation field, employing the loss
functions in Eq. 11 and Eq. 12, with the hyperparameters set
as λbbox = 2.0 and λid = 1.0.
Audio-video joint training. As our model utilizes 3DMM
parameters as control signals for modeling facial dynam-
ics, ideally, we can employ off-the-shelf audio-to-3DMM
estimators to accomplish audio-driven motion modeling.
Nonetheless, we found that this naive approach yields
inferior results, characterized by inaccurate and flickering
motion, due to the inevitable domain gap when transferring
video to audio signals. To address this issue, we finetune the
deformation field on paired audio-video data [30]. Specifi-
cally, for data preparing, given an audio-video pair, we ex-
tract 3DMM expression parameter βaud from audio signals
using [70], and derive 3DMM identity parameter αvid and
camera poses from its video counterpart using [12]. Then,
the finetuning is conducted in the same manner as training
on video data. We sample a source frame and a target frame
from the same video clip, utilizing the source frame as
the model input and the target frame as the supervision.
The input to the deformation field is a combination of
(αvid, βaud). During finetuning, we fix other modules and
only train the deformation field, using the local reconstruc-
tion loss (Eq. 11) on the mouth region and the identity loss
(Eq. 12) to preserve identity. The hyperparameters are set as
λbbox = 1.0 and λid = 0.2.
Fast adaptation on challenging cases. Similar to existing
tuning-free methods [1], [59], [61], [62], our method can
well handle common faces with an tuning-free manner, but
encounters artifacts when dealing with challenging cases,
such as out-of-domain faces and faces with heavy make-ups.
To address this issue, we explore a fast adaptation strategy
that requires optimizing only a very limited number of
parameters within a short time, enabling our model to
handle challenging cases. Specifically, given a challenging
case Is, we use it as both the source image and the driving
image to get its reconstruction Î using our model, then
directly optimize the refined tri-plane feature Fe in Eq. 3 to
make Î match Is. We apply the reconstruction loss (Eq. 10)
between Is and the generated Î , and additionally use a
depth regularization loss Lreg = ||Îdopt − Îdreg||2 for geome-
try regularization, where Îdreg represents the rendered depth
obtained from the original tri-plane feature Fe, Îdopt denotes
the depth generated from the feature during optimization.
The total loss function is formulated as:

Ltotal = λrecLrec + λregLreg, (14)

where we set λrec = 1 and λreg = 1. After this adaption
process, our model is capable of faithfully reconstructing
challenging faces using the optimized tri-plane feature, ex-
amples are shown in Fig. 10.
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TABLE 1
Quantitative comparison on self-reenactment and cross-reenactment. The results indicate that our method achieves the best reconstruction

quality in most metrics, as well as the best pose accuracy, and attains a comparable motion accuracy compared with 2D-based methods.

Methods Self-reenactment Cross-reenactment

FID↓ LPIPS↓ PSNR ↑ SSIM ↑ CSIM↑ AED↓ APD↓ FID↓ CSIM↑ AED↓ APD↓

Face-vid2vid [3] 36.75 0.204 20.22 0.651 0.768 0.129 0.024 49.98 0.603 0.210 0.035
PIRenderer [59] 43.90 0.238 20.69 0.633 0.712 0.132 0.038 56.39 0.482 0.224 0.042
StyleHEAT [1] 46.32 0.227 21.80 0.638 0.701 0.146 0.031 51.20 0.477 0.237 0.045

ROME [61] 50.55 0.243 17.44 0.614 0.726 0.155 0.025 66.01 0.548 0.259 0.029
HideNeRF [62] 54.47 0.251 18.17 0.609 0.720 0.159 0.023 62.14 0.530 0.308 0.031
Real3D [71] 38.93 0.215 21.07 0.643 0.765 0.151 0.029 51.77 0.582 0.215 0.033
VOODOO3D [72] 42.19 0.219 20.85 0.647 0.733 0.152 0.023 53.84 0.490 0.301 0.030
NOFA [31] 32.08 0.159 21.55 0.668 0.785 0.142 0.021 42.38 0.665 0.256 0.024
Ours 29.91 0.176 21.83 0.672 0.789 0.135 0.021 43.75 0.691 0.234 0.023

Ours                       NOFA                VOODOO3D               Real3D                 HideNeRF                ROME                StyleHEAT             PIRenderer          Face-vid2vidSource \
Driving              

3D-based methods 2D-based methods 

Fig. 4. Comparison of video-driven avatar synthesis. We compared our method with both 2D-based and 3D-based methods. The results
demonstrate that our method can produce high-fidelity facial avatars with accurate motion.

4 EXPERIMENTS

4.1 Implementation details

Dataset and preprocessing. We train our model using syn-
thetic 3D data produced by EG3D [22], a filtered CelebV-
HQ video dataset [69] containing 20000 video clips, and a
subset of Voxceleb [30] dataset which includes 1500 aligned
audio-video pairs. For video preprocessing, we crop and
align the videos in the same way with [22], then extract
per-frame 3DMM parameters including identity, expression,
and camera poses for training.
Training details. Our framework is trained across three
stages using 4 Nvidia Tesla V100 GPUs. The batch size is
set to 4, and we utilize the ADAM optimizer to optimize
model weights. In the reconstruction training stage, we
first train the image encoder for 1000K iterations, using a
learning rate of 10−4. We then fix the image encoder and
proceed to train the detail network and the feature fusion
network for 200K iterations, using the same learning rate.

In the deformation training stage, we add a deformation
field and jointly train the entire model for 1000K iterations,
using a smaller learning rate of 2 ∗ 10−5. In the hybrid data
training stage, we train the model for 200K iterations, with
the learning rate set as 10−4. For audio-video joint training,
we finetune the deformation field for 200K iterations, using
a learning rate of 2 ∗ 10−5. The entire training process takes
approximately 5 days.

Modeling head rotation and background. In our imple-
mentation, similar to [48], [49], [50], [51], we use camera
poses to model head rotation. This helps improve the pose
accuracy in video-driven facial avatar generation, but will
lead to background movements when applying different
poses, thus affecting the overall realism of the rendered
video. To address this issue, we adopt a post-processing to
handle background movements. Specifically, we mask out
the foreground of the input image then use an inpainting
model [74] to fill the background. During face rendering,
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Fig. 5. Comparison with 3D-based methods on novel view synthesis. We render three novel views for each method, with their expressions
controlled by the driving image. The results show that our method achieves comparable reconstruction quality with the optimization-based
NOFA [31], while exhibiting improved motion accuracy, and better reconstruction quality compared to the other baselines.

TABLE 2
Quantitative comparison of audio-driven avatar synthesis. Our

method achieves better reconstruction quality and pose accuracy than
the baselines, and it also achieves a competitive facial motion accuracy

compared to the 2D-based method.

Methods FID↓ CSIM↑ AED↓ APD↓

SadTalker [73] 59.86 0.645 0.224 0.047
Real3D [71] 55.16 0.667 0.285 0.029
Ours 52.47 0.683 0.236 0.024

we utilize a real-time portrait matting model [75] to obtain
the foreground of the rendered face and combine it with
the inpainted background, finally resulting in a static video
background.
Evaluation metrics. We utilize several metrics to assess the
quality of reconstruction and reenactment. The peak signal-
to-noise ratio (PSNR), Structural Similarity (SSIM), and
Learned Perceptual Image Patch Similarity (LPIPS) [66] are
employed for evaluating image synthesis quality. Further-

more, we employ the Frechet Inception Distance (FID) [76]
to measure the distance between synthetic and real image
distributions. We calculate the cosine similarity (CSIM) be-
tween the source and generated images to evaluate identity
preservation. Referring [59], to assess reenactment quality,
we extract 3DMM expression and pose parameters from
synthetic and real images and compute their Average Ex-
pression Distance (AED) and Average Pose Distance (APD).

4.2 Comparison of video-driven facial avatar synthe-
sis.
Baselines and benchmarks. We evaluate our method by
comparing it with several state-of-the-art facial avatar syn-
thesis methods, including the following 2D methods: PIRen-
derer [59], Face-vid2vid [3], and StyleHEAT [1], as well as
the following 3D methods: VOODOO3D [72], Real3D [71],
ROME [61], HideNeRF [62] and NOFA [31]. In the eval-
uation of video-driven face reenactment, we conduct two
types of reenactment tasks: self-reenactment and cross-
reenactment. In self-reenactment, the identity of the source
image is the same as that of the driving frames. In cross-
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Fig. 6. Comparison of audio-driven avatar synthesis. The top row shows the driving audio and the corresponding ground truth lip motion, below
shows the generated free views with lip motion controlled by the driving audio. The results demonstrate that our method can produce view-consistent
audio-driven facial avatars with accurate lip motion.

reenactment, the source image and driving frames come
from two different identities. The latter setting is much more
challenging due to the facial feature gap between the source
and driving faces. For self-reenactment evaluation, we use
40 video clips comprising a total of 12,000 frames from the
HDTF dataset [77] and the VFHQ dataset [78]. For cross-
reenactment evaluation, we randomly select 2,000 images
from the FFHQ dataset [41] and the LPFF dataset [79] that
contains large poses as source images, and use the 40 video
clips as driving videos.

Qualitative results. Fig. 4 shows the qualitative reenactment

results of our method and other state-of-the-art methods,
demonstrating that our method achieves better reconstruc-
tion quality. Specifically, when reconstructing input faces
with large poses and dealing with driving faces with de-
viated poses, the 2D-based methods fail to infer reasonable
frontal faces and suffer from severe artifacts, whereas our
method successfully reconstructs accurate and reasonable
facial geometry. Compared to 3D-based methods, HideN-
eRF [62] ROME [61] and Real3D [71] suffer from over-
smoothed appearance, fail to maintain fidelity under novel
views, and experience inaccuracies in motion as well as
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Fig. 8. Visualization of the canonical space and evaluation of the
coarse-to-fine generation strategy. The second row shows rendering
results of the coarse canonical volume, the third row shows the ren-
dering results of the fine canonical volume produced by the detail net-
work. With the detail network, the reconstruction quality is significantly
improved, exhibiting better texture and identity preservation.

teeth artifacts; VOODOO3D [72] struggles to preserve fi-
delity of the source image. While NOFA [31] can produce
satisfying detailed textures through test-time finetuning,
the finetuning process may introduce artifacts and affect
motion accuracy. In contrast, our method guarantees fine-
grained motion control and high fidelity across views. We
also compare our method with 3D-based approaches in
terms of novel view synthesis. The results are illustrated in

w/o training with       w/ training with 
hybrid data hybrid data 

Source image             Driving

Fig. 9. Qualitative ablation of training with hybrid data. It can be
found that the reconstruction is significantly improved after refinement
training with hybrid data.

Source image               w/o fast adaption                            w/ fast adaption 

Fig. 10. We employ a fast adaptation strategy to address out-of-domain
faces and heavy make-ups. The example above shows that direct re-
construct the complex case using our model yields inferior results, while
adopting fast adaptation effectively improves the reconstruction quality.

Fig. 5, where we render three novel views for each method,
with their expressions controlled by the driving image. The
results indicate that our method attains a reconstruction
quality comparable to the optimization-based NOFA [31],
while exhibiting improved motion accuracy and superior
quality compared to the other 3D-based methods.
Quantitative evaluations. The quantitative results are listed
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TABLE 3
Quantitative ablation of training with hybrid data. The

reconstruction quality is significantly improved with refinement training
with hybrid data.

Training with hybrid data FID↓ LPIPS↓ PSNR ↑ SSIM ↑ CSIM↑

w/o 39.67 0.234 19.08 0.625 0.695
w/ 29.91 0.176 21.83 0.672 0.785

TABLE 4
Quantitative evaluation of coarse-to-fine generation. The

reconstruction quality is significantly improved with the help of the detail
network in the refine stage.

Stage FID↓ LPIPS↓ PSNR ↑ SSIM ↑ CSIM↑

Coarse 37.44 0.213 20.25 0.649 0.703
Fine 29.91 0.176 21.83 0.672 0.785

in Table. 1. In terms of reconstruction quality, our method
achieves comparable performance to the optimization-based
NOFA [31], and surpasses the other strong baselines. In
facial motion modeling, the average expression distance
(AED) shows that our 3D-based method produces com-
petitive animation results compared to 2D-based methods.
Furthermore, for head pose modeling, our method signif-
icantly outperforms the baselines in terms of the average
pose distance (APD).
User study. In order to assess the effectiveness of our
proposed method in terms of human perception quality,
we conducted a comprehensive user study. Each participant
was presented with 20 questions randomly selected from the
test data, and asked to identify their most preferred result
for each question, taking into consideration both the recon-
struction quality and motion quality. The study involved
a total of 60 participants, with an analysis illustrated in
Fig. 11. On average, our method was favored by 75% of the
participants, substantially surpassing the performance of
the baselines. This outcome provides compelling evidence
in support of the robustness and superior quality inherent
in our proposed method.

4.3 Comparison of audio-driven facial avatar synthe-
sis.

Baselines and benchmarks. For audio-driven facial avatar
synthesis comparison, we compare with SadTalker [73]
and Real3D [71]. We utilize 100 images from the FFHQ
dataset [41] and the LPFF dataset [79] as source images, and
20 audio-video pairs from the HDTF dataset [77] to provide
the driving signal. Since the underlying generated head
poses can be diverse, it is inadequate to evaluate the pose
accuracy of audio-driven avatar generation using ground
truth head poses, we therefore manually set the generated
head poses to range from −60◦ to 60◦. Then, we use CSIM to
measure identity preservation, FID to assess image quality,
and employ AED and APD to evaluate motion accuracy.
Qualitative results. Fig. 6 shows the qualitative results. It
can be observed that, SadTalker [73] produces artifacts in
novel views that deviate significantly from the source image
and fails to infer reasonable novel views given the source
images with large poses, while Real3D [71] suffers from

TABLE 5
Quantitative evaluation of the weighting network and identity

condition in the deformation field. The improved quantitative metrics
validates the effectiveness of the adopted designs.

Weighting network w/ w/o Identity condition w/ w/o

AED ↓ 0.135 0.144 CSIM ↑ 0.785 0.719

Fig. 11. Statistical results of the user study. Our method was favored
by 75% of the participants, substantially surpassing the performance of
the baselines.

inaccurate lip motion. In contrast, our method can maintain
high-fidelity and accurate lip motion across various poses
and can effectively handle source images with large poses.
Quantitative evaluations. The quantitative results are re-
ported in Table. 2. The results validate that our method
achieves better reconstruction quality and pose accuracy
than the comparison baselines, and produces accurate facial
motion that is comparable to SadTalker [73].

4.4 Ablation Study

Effectiveness of the coarse-to-fine generation strategy. As
depicted in Fig. 2, given a source image Is, we adopt a
coarse-to-fine generation strategy, including firstly employ-
ing an encoder-generator network to get a coarse canonical
volume Vc, then using a detail network to help generate a re-
fined volume Ve. The second row of Fig. 8 shows rendering
results of Vc. It can be observed that although the rendered
images possess similar structure and colors to the source
image, they lack detailed texture and identity information.
The third row of Fig. 8 shows rendering results of Ve, its
reconstruction quality is significantly improved compared
to the coarse reconstruction results, exhibiting more detailed
texture and identity that closely resemble the source images.
For quantitative evaluation, we conduct self-reenactment
experiment employed in Sec. 4.2, and report the reconstruc-
tion quality of the two stages in Table. 4. The results further
validate the effectiveness of the coarse-to-fine generation
strategy. Compared to the naive compensation strategy and
network structure proposed in NOFA [31], which were
insufficient to faithfully supplement the information loss
and required time-consuming and GPU-intensive test-time
finetuning to achieve accurate reconstruction, the novel
network structure and refine strategy in this work is more
effective. It allows for a more precise extraction of detailed
information from the source image, enabling the generation



12

Vi
rt

ua
l a

va
ta

rs
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Dr
iv

in
g

Fig. 12. Application of virtual avatar synthesis. The top row shows the driving video, the following shows generated virtual avatars.

of high-fidelity 3D avatars without the need for laborious
test-time finetuning. Moreover, it achieves a reconstruction
quality comparable to the optimization-based NOFA [31], as
validated in Sec. 4.

Evaluation of the deformation field. We learn a deforma-
tion field to model facial dynamics. As shown in Fig. 3, we
employ a weighting network to increase motion accuracy,
and use the 3DMM identity parameter as the condition for
both the deformation network and the weighting network
to preserve the source identity. Qualitative ablation of these
designs are shown in Fig. 7. (a). It can be found that
without the identity parameter as condition, the generated
face suffers from identity leakage from the driving frame,
and can not preserve the identity information of the source

image. Furthermore, without the weighting network, the
generated expressions are inaccurate and inconsistent with
the driving frame. We also conduct self-reenactment exper-
iment employed in Sec. 4.2, using the average expression
distance (AED) to evaluate the effectiveness of the weight-
ing network, and use CSIM to evaluate the effectiveness
of identity condition. The results are listed in Table. 5,
which validates the effectiveness of the proposed designs. In
Fig. 7. (b), we visualize the weight scalars predicted by the
weighting network. Specifically, given a source image, we
shoot camera rays in the front view onto the reconstructed
canonical volume, and sample four 2D coordinate planes
along the camera’s z-axis. The heat maps show the normal-
ized weights of the sampled positions. Their distribution
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Source image        Novel view          Source image                        Novel views

Fig. 13. Limitations of our method. When handling source images
with large pose, our method may encounter artifacts. Additionally, since
our training data contains only frontal faces, the generated avatar only
includes the frontal face region.

indicates that the weighting network has learned to assign
higher weights to the facial region, particularly the dynamic
areas such as the eyes and mouth. Conversely, it assigns
smaller weights to the background areas that remain static.
It further validates the weighting network helps to improve
the motion accuracy.
Effectiveness of training with hybrid data. After training
the image encoder, the compensation network and the de-
formation field separately, we perform a refinement training
stage that utilize both synthetic and real data to enhance the
texture quality of the generated avatars, as the real video
dataset [69] exhibits relatively inferior texture quality. As
shown in Fig. 9, without refinement training with hybrid
data, the generated avatar displays low texture quality and
poor identity preservation. After training with hybrid data,
the generation quality is substantially enhanced. We con-
duct self-reenactment experiment employed in Sec. 4.2 for
quantitative evaluation, results are listed in Table. 3, which
also validate the effectiveness of the refinement training
stage.
Effectiveness of fast adaption. While our method can well
handle common faces with an tuning-free manner, it may
encounter artifacts when dealing with complex cases such
as out-of-domain faces or faces with heavy make-ups. We
address this issue by employing a fast adaptation strategy.
As shown in Fig. 10, given a source image with heavy make-
up, directly reconstruct it using our model produces inferior
results. In comparison, adopting fast adaption on the source
image effectively helps to improve the reconstruction qual-
ity.

4.5 Application on virtual avatar synthesis

In addition to modeling real-world faces, we also investigate
applications on virtual avatar synthesis. As our method
is based on a pretrained 3D GAN [22] that is capable of
generating virtual 3D faces from its latent space, our method
inherently supports randomly generating virtual avatars.
We show examples on video-driven avatars synthesis in
Fig. 12, which demonstrates that our method is capable of
generating realistic virtual avatars with accurate motion.

5 LIMITATIONS AND ETHICAL ISSUES

Limitations. Although our method can reconstruct high-
fidelity 3D avatar from a single source image, it still has
some limitations. As shown in Fig. 13, when dealing with
source images with large pose, our method may encounter
artifacts. Additionally, since our training data contains only

frontal faces, the generated avatar only includes the frontal
face region. Furthermore, the facial motion is modeled by
a deformation field that relies on a pretrained 3DMM ex-
tractor to estimate the 3DMM parameters as control sig-
nals, such pretrained model may produce inaccurate results
especially when handling extreme expressions beyond its
capacity. Applying 360◦ data for full head reconstruction
and more robust motion representation for motion modeling
would be our future plans.
Ethical issues. Since our framework can reconstruct high-
fidelity facial avatars using just a single image, it may pose
a risk for malicious uses, such as deep-fakes. We are acutely
aware of the potential for our approach to be misused.
Therefore, we plan to investigate the implementation of
robust video watermarks for the synthesized videos when
we release the code. On the other hand, we hope that our
work can also advance the researches on privacy protection
and deep-fake detection.

REFERENCES

[1] F. Yin, Y. Zhang, X. Cun, M. Cao, Y. Fan, X. Wang, Q. Bai, B. Wu,
J. Wang, and Y. Yang, “Styleheat: One-shot high-resolution editable
talking face generation via pretrained stylegan,” ECCV, 2022.

[2] A. Siarohin, S. Lathuilière, S. Tulyakov, E. Ricci, and N. Sebe, “First
order motion model for image animation,” Advances in Neural
Information Processing Systems (NIPS), vol. 32, 2019.

[3] T.-C. Wang, A. Mallya, and M.-Y. Liu, “One-shot free-view neural
talking-head synthesis for video conferencing,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition
(CVPR), 2021, pp. 10 039–10 049.

[4] Y. Wang, D. Yang, F. Bremond, and A. Dantcheva, “Latent image
animator: Learning to animate images via latent space naviga-
tion,” arXiv preprint arXiv:2203.09043, 2022.

[5] A. Siarohin, S. Lathuilière, S. Tulyakov, E. Ricci, and N. Sebe, “Ani-
mating arbitrary objects via deep motion transfer,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 2377–2386.

[6] N. Drobyshev, J. Chelishev, T. Khakhulin, A. Ivakhnenko, V. Lem-
pitsky, and E. Zakharov, “Megaportraits: One-shot megapixel neu-
ral head avatars,” arXiv preprint arXiv:2207.07621, 2022.

[7] K. Cheng, X. Cun, Y. Zhang, M. Xia, F. Yin, M. Zhu, X. Wang,
J. Wang, and N. Wang, “Videoretalking: Audio-based lip synchro-
nization for talking head video editing in the wild,” in SIGGRAPH
Asia 2022, 2022.

[8] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep
speaker recognition,” arXiv preprint arXiv:1806.05622, 2018.

[9] H. Zhu, W. Wu, W. Zhu, L. Jiang, S. Tang, L. Zhang, Z. Liu,
and C. C. Loy, “Celebv-hq: A large-scale video facial attributes
dataset,” in European Conference on Computer Vision (ECCV), 2022,
pp. 650–667.

[10] V. Blanz and T. Vetter, “A morphable model for the synthesis of
3d faces,” in Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, 1999, pp. 187–194.

[11] P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter, “A 3d
face model for pose and illumination invariant face recognition,”
in 2009 sixth IEEE international conference on advanced video and
signal based surveillance, 2009, pp. 296–301.

[12] Y. Deng, J. Yang, S. Xu, D. Chen, Y. Jia, and X. Tong, “Accurate 3d
face reconstruction with weakly-supervised learning: From single
image to image set,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops, 2019, pp. 0–0.

[13] Y. Feng, H. Feng, M. J. Black, and T. Bolkart, “Learning an
animatable detailed 3d face model from in-the-wild images,” ACM
Transactions on Graphics (TOG), vol. 40, no. 4, pp. 1–13, 2021.
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